
Ultimate Cloud

(a scheme which uses all formidable technologies culminated together
to form a most secure mechanism for cloud data fortification)

K. Naga Sumanth, (M.Tech)
Department of Information Security and Cyber Forensics,

SRM University, Kattankulathur,
Chennai, India.

Dr. Magesh Sriramula, (Ph.d)
Department of Information Security and Cyber Forensics,

SRM University, Kattankulathur,
Chennai, India.

Abstract: - One of the supreme perplexing problems of cloud
service provisioning is to motivate users to believe and to trust
the security of cloud service and upstream their sensitive data.
Even though cloud service providers can say that their
services are heavily protected by extravagant encryption
methodologies, modern cloud systems still cannot convince the
users that even if the cloud servers are exploited, the data is
still strongly protected. This study proposes Ultimate Cloud, a
scheme which uses all formidable technologies culminated
together to form a most secure mechanism for cloud data
fortification, in every way that is possible. Ultimate Cloud
employs AES, RSA and indirectly encrypts users’ data by
their public keys, but stores their private keys on nothing;
instead, they are stored on any mobile devices and accessible
via 2-dimensional barcode images such as QR codes. And they
are employed to decrypt users’ sensitive data. In this way,
users’ data are securely protected even if the cloud servers are
compromised. Also, Ultimate Cloud provides users with the
knowledge of managing private keys by storing the keys into
mobile devices and displaying them via QR codes. Moreover,
three Modules exist such as: personal, home and enterprise
level scenarios are proposed to present the achievability of
Ultimate Cloud. In addition, a classified structure is designed
for key randomization and data sharing in the suggested
structure.

Key words: - UC or uC (Ultimate Cloud), QR (Quick
Response)

I. INTRODUCTION
Benefit from the idea of cloud and related technologies,
cloud services are popular in recent years. More and more
users and enterprises tend to upload their data onto cloud
servers so that the data can be maintained properly with the
scalability, ubiquity and accessibility properties. However,
since users usually do not know or trust the security level
of external cloud services, risk management of out-sourcing
data storage service is a dire issue here.
Conventionally, enterprises manage their trade secrets by
themselves. Although uploading these trade secrets to cloud
servers can reduce the cost of data management, the risk of
secret leakage is greater. Business rivals, or even
governments, may try to steal the trade secrets by
employing hackers or sending insiders to the cloud service
operator. Moreover, since the ownership of enterprise data
usually belongs to the enterprises, not creators, the data
must be accessible to the creator’s direct or indirect bosses
according to the enterprise hierarchy structure but not to
other unauthorised employees.

The most common and trusted solution to protect data are
to encrypt and decrypt data by encrypting and decrypting
keys. However, the design of key management of these
keys is the greatest challenge of this solution if both the
data confidentiality and sharing requirements should be
satisfied. Traditionally, the keys are designed to be stored
on PCs where the data are encrypted and decrypted. In this
manner, although the data can be safely protected, it is
difficult to be shared with other users who are authorised to
access it. Also, the keys are not portable and not convenient
to be used on other PCs.

II. BACKGROUND WORK
A. Cloud data fortification
Commonly in conventional cloud service providers such as
Amazon, google users’ data are managed and secured by
them. Suppose those cloud servers are compromised in one
way or other, then the users data may suffer from leakage
problem. Several researches include the idea of client
application which is responsible for encrypting the data
before sending to the cloud service provider and decrypting
after downloading it from it. Also, the client application is
coupled with user’s computer here and the decryption keys
of data are difficult to be shared with other users or another
client application.
B. Facial Recognition
Recently there has been introduction of many alternatives
for the authentication and authorization mechanisms such
as biometric, palm-vein technology and so on. But the best
and lightweight technology more over efficient one is the
facial recognition. Now as far as we know each facial
recognition software has an algorithm and they try to match
using that. The one which we are currently available can be
easily bypassed or in some cases due to the light variations
they may not be able to even recognize the face in front of
the camera. So, this factor is to be resolved and combined
with any other authentication mechanism would provide
tight security.
C. QR codes
Quick Response codes are normally used to scan the URLs’
but on the bright side they can store large amount of data
unlike the barcodes. The recognition speed for QR codes
for an ordinary 0.3 Mega pixel camera is 0.35 seconds
which is quite impressive. But then again every mobile
device now a day have QR scanners so we do not want to
store any sensitive info in the QR codes. Or we have to find

K. Naga Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1938-1942

www.ijcsit.com 1938

a mechanism to randomize the QR code for a single user in
a period of time, such that if any one manages to acquire it,
it is useless for him.

III. SYSTEM OVERVIEW AND ARCHITECHTURE

Fig 1: Basic Overview

Fig. 1 shows the system overview of UC. In this figure, the
key and lock represent a pair of private and public key,
respectively. First of all, the cloud application developers
can upload and register their applications onto an un-trusted
public cloud. Second, the users can generate their own
public and private key pairs by mobile applications, and
register their accounts of the public cloud applications. For
the personal usage scenario, users can encrypt and upload
their files by PC applications and decrypt these files by
showing 2D barcode images, which include the users’
private keys, on mobile devices to PC applications. For the
home surveillance scenario, IP cameras can encrypt
streaming frames indirectly with the users’ public keys.
The encrypted streaming frames can be decrypted and
displayed by PC applications after the private keys are
extracted from 2D barcodes. Finally, for the enterprise
scenario, the Enterprise Access Controller (EAC) provides
the access control service to decide whether a user can
access another user’s secret files.
Fig. 2 shows the high level architecture of UC public cloud.
Similar to traditional cloud service, cloud applications of
UC are deployed upon cloud platforms (such as the Hadoop
platform) in application servers. Based on this architecture,
the UC module is included as a middleware between
applications and cloud platform to manage security issues.
In the UC module, whenever a cloud application is
registered by application developer, the Application
Registration Manager registers the application, and returns
the ID and password of this application. If any cloud
application utilises any functionality of UC module, its ID
and password must be verified by the application
authenticator. Although the applications can maintain their
own user accounts, the User Registration Manager manages
a global identifier space where each account in each
application is mapped to a unique global UC identifier.

Finally, the Relationship Manager maintains the
relationship or enterprise architecture between different
users.

Fig 2: High level Architecture

Whenever an enterprise user sends a request to access other
user’s data, the EAC must decide that whether this request
is permitted via the decision maker module based on
access control rules. If this request is permitted, the data
manager module is executed to generate the encrypted
owner’s private key. All the private keys of enterprise users
must be stored in the key storage of EAC to fulfil these
requests and the backup requirement.

IV. SYSTEM ASSUMPTIONS
To define the scope of uC, several assumptions are defined.
Four main parties are included in uC: mobile phone, PC
application, enterprise access controller and public cloud.
The mobile phone keeps the user’s root secret (private key),
so it is the root of trust of uC and is not compromisable.
One user account can be associated with only one mobile
phone. The PC and PC application are not compromisable;
if somehow they are to be compromised, we are
implementing pseudo random QR generation on both
mobile device and cloud server which acts as a token key
for a certain period of time and so prevention access to
attackers to the files (This is just authentication concern).
Although PC is not compromised and private keys can be
safely stored on PCs, multiple copies of keys must be
maintained by users if the data are required to be decrypted
on multiple PCs; it is the usability concern rather than
security concern to store keys on mobile phones rather than
PCs. In addition, we assume that the public cloud is
compromisable but the enterprise access controller is not.
Since the enterprise access controller only manages the
private keys of enterprise users, access control can be
provided without maintaining the large files. Therefore
users can feel safe to upload their sensitive data to public
cloud. Also, the public cloud service provider must already
have a public-key infrastructure (PKI), 〈EKuC, DKuC〉, to

K. Naga Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1938-1942

www.ijcsit.com 1939

use, and the public key EKuC is included directly into the
PC and mobile phone applications and maintained in the
enterprise access controller. Since numerous researches
have proposed various revocation mechanisms for PKI,
such as creating certificates via CA, this paper does not
focus on this issue. In addition, the mobile and PC
applications must not be modified or replaced by
adversaries before they are downloaded and installed by
users; otherwise, they can be controlled by attackers.
Moreover, users can delegate the access rights of sensitive
files to the delegates who they trust. Finally, we encrypt the
user files using AES or Rijndael algorithm and only use
RSA to encrypt and decrypt Session keys.

V. DETAILED SYSTEM DESIGN
The design of uC includes three scenarios: the personal
usage, home surveillance and enterprise scenarios. To
describe the protocols of them, numerous notations are
defined in Table 1 and employed throughout this paper.
To register an account, the user-selected account UIDAPP
and π are encrypted with a random nonce R1 by the uC’s
public key EKuC. If this registration request is approved by
cloud application, the cloud application logins to uC
module by providing APPIDuC and APPKEYuC to register
the account. The registration result is sent back to user with
a signature sig1 of uC module, where sig1 = Da
(result||UIDAPP||π, DKuC). Then, the mobile application
can generate a pair of public and private keys, encode the
public key into a QR code image and send the public key to
PC application. Finally, the PC application forwards the
user’s public key to the uC module.

Table 1: Notation Description

UIDAPP, π
The user account and password
used to login the cloud
application

UIDuC
The global user identifier registered
by cloud application and
maintained by uC

APPIDuC, APPKEYuC
The account and password used by
cloud applications to login the uC
module

Rx
Random numbers (can be used as
session keys) (x = 1, 2, 3, …)

EKuC, DKuC
The public and private keys of uC
module

EKEAC, DKEAC
The public and private keys of
Enterprise Access Controller

EKuser, DKuser The user’s public and private keys

EKcam, DKcam
The public and private keys of IP
camera

Ea(d, k), Da(d, k)
Asymmetric encryption and
decryption functions for data d and
key k

Es(d, k), Ds(d, k)
Symmetric encryption and
decryption functions for data d and
key k (Es = Ds)

Me(d), Md(d)
Matrix code encoding and
decoding functions for data d

Path UID 1APP,
UID2APP

The hierarchical path from
UID1APP to UID2APP

A. Personal Usage Scenario
The personal usage scenario is designed for users to upload
and backup their files on one PC or laptop, and download
them to other trusted computers. In this scenario, regular
files are protected by using the PC applications on users’
computers and a personal storage cloud application. Fig. 3
shows the sequence diagram to encrypt and upload files.
First, users enter their accounts and passwords to login the
Personal Storage Application, and choose a random number
R2 to be the file encryption session key. The uploaded file
is encrypted by this session key by symmetric encryption
function, and this key is encrypted by user’s private key;
therefore users can extract it by using their private keys in
the future.

Fig 3: Sequence diagram to encrypt and upload files.

Fig. 4 shows the sequence diagram of downloading the
previously uploaded files. After logins to Personal Storage
Application, the PC application sends a request to retrieve
the files and related metadata by providing the file names.
Then, uC module sends back the encrypted file and session
key together with the signature sig2 = Da(h(Es (File,
R2)||Ea(R2, EKuser)), DKuC), where h is a hash function
for reducing the size of signed message. After the
encrypted file and metadata is downloaded, the user is
asked to present a QR code containing user’s private key.
Therefore the PC application is able to decrypt the session
key R2, and use it to decrypt the file further.

Fig 4: Sequence diagram to decrypt and download files.

K. Naga Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1938-1942

www.ijcsit.com 1940

B. Enterprise Scenario
For enterprise users, uC module provides a hierarchical key
management scheme for basic data sharing. In general, a
management hierarchy is established in enterprise with
multiple levels. For example, Fig. 5 shows a hierarchy
containing chairman, CEO, customer service and RD staffs.
To protect their data, a pair of public and private keys is
selected by each one of themselves. However, enterprise
data are not personal property; at least, the owner’s boss
must also be able to access the owner’s data. Therefore a
copy of the owner’s private key encrypted by the public
key of the owner’s direct boss must be maintained.
Moreover, users can also delegate their keys to other users
who they trust in case they are not familiar with computers
or they want to back up their keys. In this case, the data
owner’s private key is also encrypted by the public key of
the trusted person and maintained in uC.

Fig 5: General enterprise scenario

Fig: 6 hirrerarcy path construction

Fig. 6 shows an example of hierarchy path construction. In
this case, the RD Mike wants to specify that the CEO Eric
is his direct doss. To achieve this goal, Mike logins to the
Enterprise Storage Application first to obtain the Eric’s
public key. Then, the Mike’s private key is provided by the
mobile application, encrypted by Eric’s public key and
uploaded to uC module.
Fig. 7 shows an example that the data owner’s indirect boss
wants to obtain the owner’s data. In this case, the chairman
Steve wants to access the RD Mike’s data. According to the
file ID, uC module finds out the file’s owner and the
encrypted session key Ea R 2, EKuser

3 of this file. Then, any
path from Steve to Mike is searched by depth-first search.
If any path exists from Steve to Mike, the encrypted private
keys of all users along with this path are gathered. The

path, encrypted private keys, encrypted session key,
encrypted file and signature sig4, are sent back to the PC
application together, where

sig4 = Da (h(Path UID1

APP, UID3
APPEa DKuser2, EKuser

1
 3 2 3
Ea DK user, EKuser···Ea R 2, EKuser EsFile, R2, DKuC
After the private key DKuser

1 is obtained, the DKuser
2 ,

DKuser
3 , R2 and the file can be decrypted sequentially.

Although uC module provides the hierarchical data sharing
mechanism, more complex access control mechanism such
as sharing data between users belonging to the same group
but not superiors to each other is not supported. To solve
this problem, enterprises can maintain their access control
servers, EACs, to cooperate with uC module. Fig. 8 shows
the sequence diagram of file sharing via EAC. In this case,
the RD Mike wants to obtain the CS Mary’s file. First,
Mike encrypts his account and password by EAC’s public
key, sends the result to EAC, and requests for obtaining
Mary’s file. If this request is permitted, the EAC uses
Mike’s account and password to login the Enterprise
Storage Application, and the Enterprise Storage
Application logins to uC module. According to the file ID,
uC module gathers the encrypted session key Ea R 2,
EKuser

2 and the encrypted file, and sends the results and
sig5 to EAC, where sig5 = Da(h)
UID2

APPEa R 2, EKuser
2 EsFile, R2DKuCloud. Since EAC

maintains Mary’s private key, DK2
user, this key is encrypted

by Mike’s public key and sent to the PC application.
Finally, Mike can decrypt the file by using his private key,
the DKuser2 , and R2.

Fig: 7 Sequence diagram of file sharing

K. Naga Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1938-1942

www.ijcsit.com 1941

Fig: 8 Sequence Diagram of File Sharing via EAC

C. Security Analysis
As the assumptions mentioned previously, the cloud
service, including cloud applications, uC module, cloud
storage and cloud DB, are compromisable. However, since
user’s data are properly encrypted by user’s private key
which is not stored on cloud, adversaries cannot access the
plaintext of data. Although attackers can only delete the
encrypted data and session keys, this problem can be solved
by self-maintained backups; it is out of scope of this paper.
Also, if the hierarchy maintained by uC module is
modified, the protected data are still secure since the
session keys are only encrypted by the public keys of other
trusted users. Moreover, since the mobile device is the root
of trust, it is not compromisable. If user’s mobile phone is
stolen, users can login to the cloud application and delete
their data as soon as possible, since users usually bring
their phones with them and use them frequently. Therefore
only if the mobile phone is stolen and the cloud service is
compromised, the protected data are leaked. Finally,
although the delegatees have the private keys of delegators,
they cannot access to all the files of delegator without the
grants of delegator. The reason is that the delegatee and
public cloud operator do not collude (as defined in
assumptions); therefore the access control and file
decryption operations are separated.
As the messages transferred between different parties of PC
application, cloud service and EAC, since all the messages
and data are properly the encrypted by public keys or
session keys, attackers cannot extract protected
information. Also, the channel established between mobile
and PC application is a constrained channel; 2D barcode
images are difficult to be eavesdropped. Finally, almost all
the returned messages are properly signed, so attackers
cannot forge or modify them without having the private
keys.

VI. SYSTEM PROTOTYPE
To demonstrate the proposed system, the uC module, the
personal storage and enterprise storage scenarios are
implemented in the uC prototype. In the uC prototype, the
mobile application is deployed on HTC x using Android
Programming. In the PC application, the data protector and
Face recognition, QR creation and Scanning is
implemented in C# the EAC client is implemented in Java.
In the EAC, the user authenticator and decision maker are
implemented in JSP and deployed on Tomcat server, and
the key storage and access control rules are stored in
MySQL server. Finally, a User Interface with High level
Security will be made available for the people to use.

VII. CONCLUSION
In conclusion, we propose the uC to provide better
management of cloud data fortification, which includes a
hierarchical structure for key backup and data sharing, and
the EAC server to extent the capability of difficult access
control. In uC, the private keys are stored on users’ mobile
devices and presented via QR barcode imageries when they
are utilised to decrypt users’ data. In this routine, even if
the cloud services are compromised, the data are still safely
secured. Therefore individual, family and enterprise users
can feel save to upload their sensitive data up to cloud.
Finally, the uC prototype including the uC module, these
two scenarios, and EAC, is implemented and evaluated to
show that it is convenient to be used.

ACKNOWLEDGEMENT
This Project was supported by the Department of
Information Security and the Forensics division and
prototype tests are conducted in Cloud Central Laboratory
and Information security Laboratory and of SRM
University, Chennai.

REFERENCES
[1] Behl, A., & Behl, K. (2012). An Analysis of Cloud Computing

Security Issues. IEEE, 109-114.
[2] Thanks to the highly useful informations regarding QR codes in the

website https://qrstuff.com/.
[3] Top 5 security risks detailed in the webpage

http://blogs.cisco.com/smallbusiness/the-top-5-security-risks-of-
cloud-computing/.

[4] Face recognition with learning base descriptor (IEEE) paper
proposed by Zhimin Cao, Qi Yin, Xiaoou Tang, Jian Sun.

[5] Architechtural cloud design patterns provided by ‘Amazon web
services’.

[6] Methodology of network security design proposed by Donald
Graji,Mohnish Pabrai ,Uday Pahrai .

[7] Integrated design of AES (Advanced Encryption Standard) encrypter
and decrypter proposed i Application-Specific Systems,
Architectures and Processors, 2002. Proceedings. The IEEE
International Conference.

[8] Wikipedia.

K. Naga Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1938-1942

www.ijcsit.com 1942

